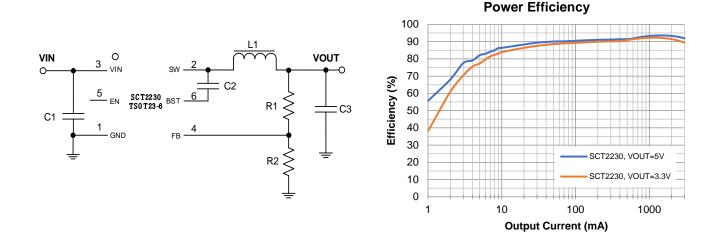


V Vin, 3A Synchronous Step-down DCDC Converter

FEATURES

- Wide Input Voltage: 4.2-17V
- 3A Continuous Output Current with Integrated 75m /45m FETs
- Wide Output Voltage Range:0.8V-7V
- Quiescent Current 150uA
- Cycle-by-Cycle Current Limiting
- Internal 2.5ms Soft-Start Limits the inrush current
- Fixed 750kHz Switching Frequency
- Input Under-Voltage Lockout
- Power save mode at light load
- Over-Temperature Protection
- Available in a SOT563 and TSOT23 Package


APPLICATIONS

- Flat Panel Digital TV and Monitors
- Surveillance
- Set Top Boxes
- Networking Systems
- Consumer Electronics
- General Purpose

DESCRIPTION

The SCT2230 is a fully integrated high efficiency synchronous step-down DCDC converter capable of delivering 3A current. The devices operate over a wide input voltage range from 4.2V to 17V and fully integrate high-side power MOSFETs and synchronous MOSFETs with very low Rdson to minimize the conduction loss.

With 750 kHz switching frequency, low output voltage ripple, small external inductor and capacitor size are achieved. SCT2230 adopts adaptive constant ON-time control architecture to achieve fast load transient

REVISION HISTORY

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

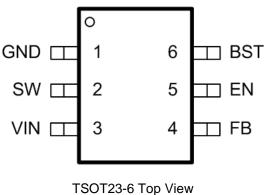
Rev 1.0 Released to Market.

DEVICE ORDER INFORMATION

PART NUMBER	PACKAGE MARKING	PACKAGE DISCRIPTION
SCT2230TVA	2230	SOT563-6L
SCT2230TVB	2230	TSOT23-6L

* (1) FOR TAPE & REEL, ADD SUFFIX R (E.G. SCT2230TVAR).

ABSOLUTE MAXIMUM RATING


Over operating free-air temperature unless otherwise noted⁽¹⁾

SYMBOL	PARAMETER	RATING	UNIT
Vin	Supply Voltage	-0.3 to 20	V
Vsw	Switch Node Voltage	-1 to VIN+0.3	V
VBST	Bootstrap	Vsw-0.3 to Vsw+6	V
VFB	Feedback Voltage	-0.3 to 6.5	V
V _{EN}	Enable/UVLO Voltage	-0.3 to 6.5	V
TJ	Operating junction temperature ⁽²⁾	-40 to 125	С
T _{STG}	Storage temperature	-65 to 150	С

(1) Stresses beyond those listed under Absolute Maximum Rating may cause device permanent damage. The device is not guaranteed to function outside of its Recommended Operation Conditions.

(2) The IC includes over temperature protection to protect the device during overload conditions. Junction temperature will exceed 150°C when over temperature protection is active. Continuous operation above the specified maximum operating junction temperature will reduce lifetime

PIN CONFIGURATION

(2.8mm x 2.8mm)

SOT563 Top View (1.6mm x 1.6mm)

PIN FUNCTIONS

NAME	PIN NUMBER		PIN FUNCTION
	SOT563	TSOT23-6	FINFUNCTION
VIN	1	3	Power supply input. VIN supplies the power to the IC, as well as the step- down converter switches. Drive VIN with a 4.2V to 17V power source. Bypass VIN to GND with a suitably large capacitor to eliminate noise on the input to the IC. See Input Capacitor.
SW	2	2	Power Switching Output. SW is the switching node that supplies power to the output. Connect the output LC filter from SW to the output load. Note that a capacitor is required from SW to BST to power the high-side switch.
GND	3	1	Power ground. Must be soldered directly to ground plane.
BST	4	6	Power supply for the high-side power MOSFET gate driver. Must connect a 0.1uF or greater ceramic capacitor between BST pin and SW node.
EN	5	5	Enable logic input. Floating the pin enables the device. Connect 100K resistor to VIN to enable the device. The device has precision enable thresholds 1.18V rising / 1.1V falling for programmable UVLO threshold and hysteresis.
FB	6	4	Buck converter output feedback sensing voltage. Connect a resistor divider from VOUT to FB to set up output voltage. The device regulates FB to the internal reference of 0.8V typical.

RECOMMENDED OPERATING CONDITIONS

Over operating free-air temperature range unless otherwise noted

PARAMETER	DEFINITION	MIN	MAX	UNIT
VIN	Input voltage range	4.2	17	V
TJ	Operating junction temperature	-40	125	°C

ESD RATINGS

PARAMETER	DEFINITION	MIN	MAX	UNIT
	Human Body Model(HBM), per ANSI-JEDEC-JS-001- 2014 specification, all pins ⁽¹⁾	-2	+2	kV
Vesd	Charged Device Model(CDM), per ANSI-JEDEC-JS-002- 2014specification, all pins ⁽¹⁾	-0.5	+0.5	kV

(1) HBM and CDM stressing are done in accordance with the ANSI/ESDA/JEDEC JS-001-2014 specification

THERMAL INFORMATION

PARAMETER	THERMAL METRIC	SOT563	TSOT23-6	UNIT
R ja	Junction to ambient thermal resistance ⁽¹⁾	120	88	°C/W
R JC	Junction to case thermal resistance ⁽¹⁾	8	12	C/VV

(1) SCT provides R $_{JA}$ and R $_{JC}$ numbers only as reference to estimate junction temperatures of the devices. R $_{JA}$ and R $_{JC}$ are not a characteristic of package itself, but of many other system level characteristics such as the design and layout of the printed circuit board (PCB) on which the SCT2230 are mounted, and external environmental factors. The PCB board is a heat sink that is soldered to the leads and thermal pad of the SCT2230. Changing the design or configuration of the PCB board changes the efficiency of the heat sink and therefore the actual R $_{JA}$ and R $_{JC}$.

For more information www.silicontent.com© 2019 Silicon Content Technology Co., Ltd. All Rights Reserved 3

ELECTRICAL CHARACTERISTICS

 V_{IN} =12V, T_J=-40°C~125°C, typical values are tested under 25°C.

SYMBOL	PARAMETER	TEST CONDITION	MIN	TYP	MAX	UNIT
Power Sup	ply and Output					
Vin	Operating input voltage		4.2		17	V
Max and a	Input UVLO	V _{IN} rising		4.0	4.15	V
Vin_uvlo	Hysteresis			300		mV
I _{SD}	Shutdown current	EN=0, No load, VIN=12V		1.5	5	uA
lq	Quiescent current	EN=2V, No load, No switching. VIN=12V. BST-SW=5V		155		uA
Enable, So	ft Start and Working Modes					
V _{EN_H}	Enable high threshold			1.18	1.25	V
V _{EN_L}	Enable low threshold		1.03	1.1		V
I _{EN}	Enable pin input current	EN=1V	1	1.5	2	uA
I _{EN_HYS}	Enable pin hysteresis current	EN=1.5V		6.8		uA
Power MOS	SFETs					
Rdson_H	High side FET on-resistance			75		m
Rdson_L	Low side FET on-resistance			45		m
Feedback a	and Error Amplifier					
V _{FB}	Feedback Voltage		0.78	0.8	0.82	V
Current Lin	nit					
ILIM_LSD	LSD valley current limit		3.2	3.7	4.2	А
Switching I	Frequency					
Fsw	Switching frequency	V_{IN} =12V, V_{OUT} =5V		750		kHz
ton_min	Minimum on-time			90		ns
toff_min	Minimum off-time			220		ns
Soft Start T	Time					
tss	Internal soft-start time			2.5		ms
Protection						
T _{SD}	Thermal shutdown threshold	T _J rising		160		°C
190	Hysteresis			20		

Product Folder Links: SCT2230

TYPICAL CHARACTERISTICS

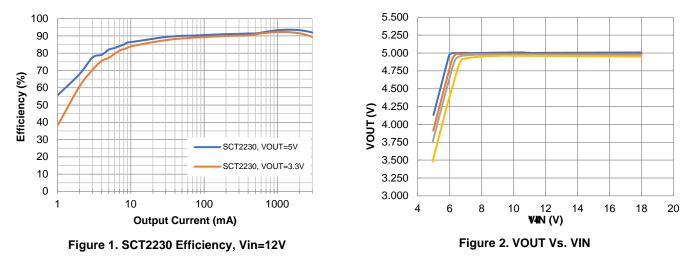


Figure 2. Load Regulation

Figure 4. FB Voltage Vs. Temperature

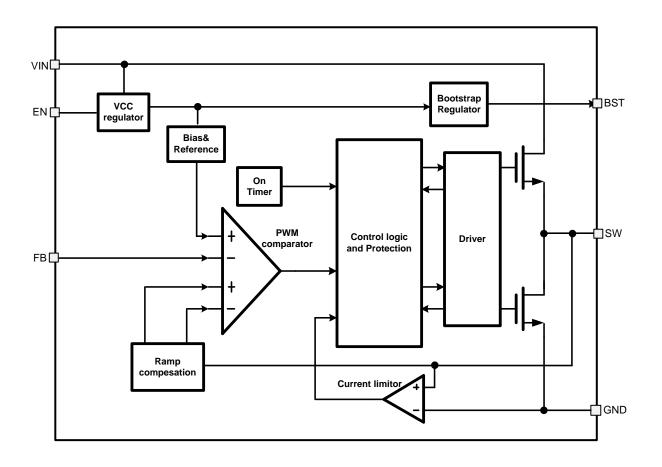

Figure 5. UVLO Vs. Temperature

Figure 6. Quiescent Current Vs. Temperature

For more information www.silicontent.com© 2019 Silicon Content Technology Co., Ltd. All Rights Reserved 5 Product Folder Links: SCT2230

FUNCTIONAL BLOCK DIAGRAM

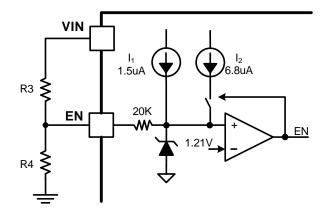
Product Folder Links: SCT2230

OPERATION

Adaptive On-time Control

The SCT2230 device is 4.2-17V input, 3A output, synchronous step-down converters with internal power MOSFETs. Adaptive constant on-time (ACOT) control is employed to provide fast

Under Voltage Lockout UVLO


The SCT2230 Under Voltage Lock Out (UVLO) default startup threshold is typical 3.9V with VIN rising and shutdown threshold is 3.6V with VIN falling. The more accurate UVLO threshold can be programmed through the precision enable threshold of EN pin.

Enable and Start up

When applying a voltage higher than the EN high threshold (typical 1.18V/rise), the SCT2230 enables all functions and the device starts soft-start phase. The SCT2230 has the built in 2.5ms soft-start time to prevent the output overshoot and inrush current. When EN pin is pulled low, the internal SS net will be discharged to ground. Buck operation is disabled when EN voltage falls below its lower threshold (typically 1.1V/fall).

An internal 1.5uA pull up current source connected from internal LDO power rail to EN pin guarantees that floating EN pin automatically enables the device. For the application requiring higher VIN UVLO voltage than the default setup, there is a 6.8uA hysteresis pull up current source on EN pin which configures the VIN UVLO voltage with an off-chip resistor divider R3 and R4, shown in Figure 7. The resistor divider R3 and R4 are calculated by equation (3) and (4).

EN pin is a high voltage pin, and can be directly connected to VIN to automatically start up the device with VIN rising to its internal UVLO threshold.

$$4 = \frac{_{3} \times }{_{-} + _{3}(_{1} + _{2})}$$
(4) 44

APPLICATION INFORMATION

Typical Application

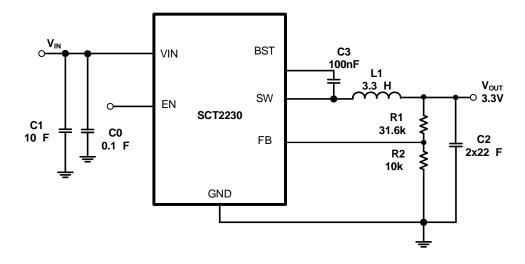


Figure 8. 12V Input, 3.3V/3A Output

Design Parameters

Design Parameters	Example Value
Input Voltage	12V
Output Voltage	3.3V
Output Current	3A
Switching Frequency	750kHz

Input Capacitor Selection

For good input voltage filtering, choose low-ESR ceramic capacitors. A ceramic capacitor 10μ F is recommended for the decoupling capacitor and $a0.1\mu$ F ceramic bypass capacitor is recommended to be placed as close as possible to the VIN pin of the SCT2230.

Use Equation (5) to calculate the input voltage ripple:

$$= - - - \times \frac{V_{OUT}}{V_{IN}} \times (1 - - - -)$$

(5)

Where:

- C_{IN} is the input capacitor value
- f_{sw} is the converter switching frequency
- I_{OUT} is the maximum load current

Due to the inductor current ripple, the input voltage changes if there is parasitic inductance and resistance between the power supply and the VIN pin. It is recommended to have enough input capacitance to make the input voltage

ripple less than 100mV. Generally, a 25V/10uF input ceramic capacitor is recommended for roost of applications. Choose the right capacitor value carefully with considering high-capacitance ceramic capacitors DC bias effect, which has a strong influence on the final effective capacitance.

Inductor Selection

The performance of inductor affects the power supply's steady state operation, transient behavior, loop stability, and buck converter efficiency. The inductor value, DC resistance (DCR), and saturation cur ent influences both efficiency and the magnitude of the output voltage ripple. Larger inductance value reduces in uctor current ripple and therefore leads to lower output voltage ripple. For a fixed DCR, a larger value inductor yields higher efficiency via reduced RMS and core losses. However, a larger inductor within a given inductor family vill generally have a greater series resistance, thereby counteracting this efficiency advantage.

Inductor values can have $\pm 20\%$ or even $\pm 30\%$ tolerance with no current bias. When the inductor current approaches saturation level, its inductance can decrease 20% to 35% from the value at 0-A current depending on how the inductor vendor defines saturation. When selecting an inductor, choose its rated current especially the saturation current larger than its peak current during the operation.

To calculate the current in the worst case, use the maximum input voltage, minimum output voltage, maxim load current and minimum switching frequency of the application, while considering the inductance with -30% tolerance and low-power conversion efficiency.

For a buck converter, calculate the inductor minimum value as shown in equation (6).

× (–)	(6)
$=$ \times \times \times	
 Where: K_{IND} is the coefficient of inductor ripple current relative to the maximum output current. 	
Therefore, the peak switching current of inductor, ILPEAK, is calculated as in equation (7).	
=	

Output Feedback Resistor Divider Selection

The SCT2230 features external programmable output voltage by using a resistor divider network R1 and R2 as shown in the typical application circuit Figure 8. Use equation (8) to calculate the resistor divider values.

$$f = \frac{(-) \times 2}{2}$$

(8)

Output Voltage (V)	SCT2231		L (µH)	C1 (µF)	C2 (µF)	C3 (nF)
1.2	4.99	10	1.5	10	2 x 22	100
1.5	8.66	10	1.5	10	2 x 22	100
1.8	12.4	10	2.2	10	2 x 22	100
2.5	21.5	10	2.2	10	2 x 22	100
3.3	31.6	10	3.3	10	2 x 22	100
5.0	52.3	10	3.3	10	2 x 22	100

Table 2. Recommended Component Selections

Product Folder Links: SCT2230

Application Waveforms

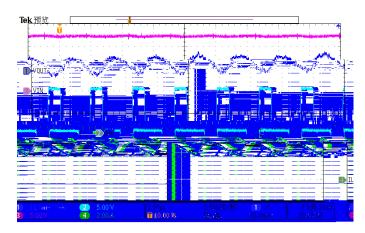


Figure 9. SW node waveform and Output Ripple VIN=12V, IOUT=3A

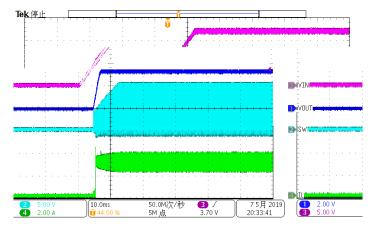


Figure 11. Power Up VIN=12V, VOUT=3.3V, IOUT=3A

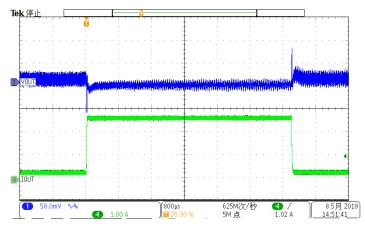


Figure 13. Load Transient VOUT=3.3V, IOUT=0.3A to 2.7A, SR=250mA/us

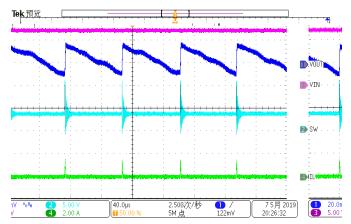


Figure 10. SW node Waveform and Output Ripple VIN=12V, IOUT=10mA

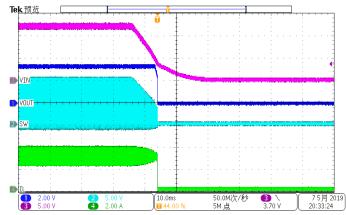


Figure 12. Power Down VIN=12V, VOUT=3.3V, IOUT=3A

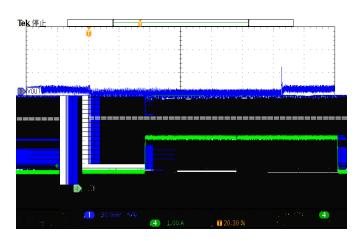


Figure 14. Load Transient VOUT=3.3V, IOUT=0.75A to 2.25A, SR=250mA/us

For more information www.silicontent.com© 2019 Silicon Content Technology Co., Ltd. All Rights Reserved 13

Layout Guideline

The regulator could suffer from instability and noise problems without carefully layout of PCB. Radiation of high-frequency noise induces EMI, so proper layout of the high-frequency switching path is essential. Minimize the length and area of all traces connected to the SW pin, and always use a ground plane under the switching regulator to minimize coupling. The input capacitor needs to be very close to the VIN pin and GND pin to reduce the input supply ripple. Place the capacitor as close to VIN pin as possible to reduce high frequency ringing voltage on SW pin as well. Figure 15 is the recommended PCB layout of SCT2230.

The layout needs be done with well consideration of the thermal. A large top layer ground plate using multiple thermal vias is used to improve the thermal dissipation. The bottom layer is a large ground plane connected to the top layer ground by vias.

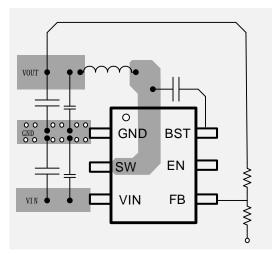
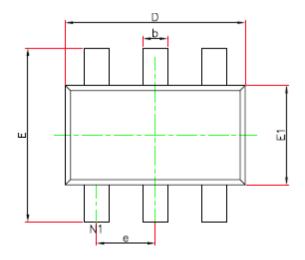
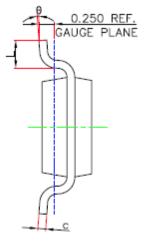




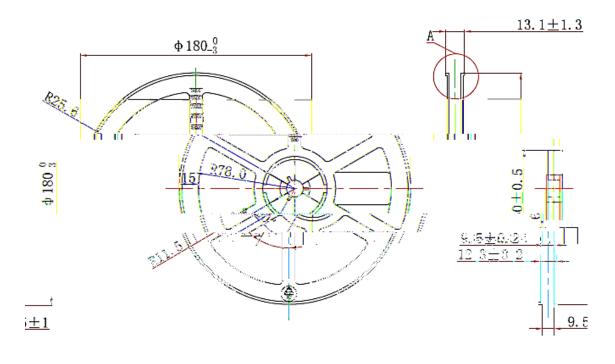
Figure 15. PCB Layout Example

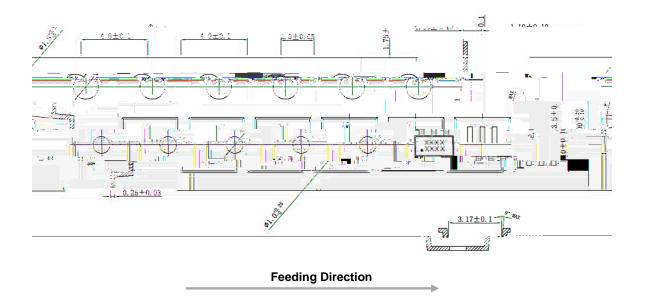
PACKAGE INFORMATION (TSOT23-6)

TSOT23-6 TOP VIEW

TSOT23-6 BOTTOM VIEW

SYMBOL	Unit: Millimeter			
STINDUL	MIN	TYP	MAX	
А			1.10	
A1	0.000		0.10	
A2	0.70		1.00	
D	2.85		2.95	
E	2.65		2.95	
E1	1.55		1.65	
b	0.30		0.50	
С	0.08		0.20	
е	(0.95(BSC)		
L	0.30		0.60	
	0 ^o		8 °	


TSOT23-6 SIDE VIEW


NOTE:

- 1. Drawing proposed to be made a JEDEC package outline MO-220 variation.
- 2. Drawing not to scale.
- 3. All linear dimensions are in millimeters.
- 4. Thermal pad shall be soldered on the board.
- 5. Dimensions of exposed pad on bottom of package do not include mold flash.
- 6. Contact PCB board fabrication for minimum solder mask web tolerances between the pins.

TAPE AND REEL INFORMATION (TSOT23-6)

For more information www.silicontent.com© 2019 Silicon Content Technology Co., Ltd. All Rights Reserved 17 Product Folder Links: SCT2230